Combining Advanced DWR and Surface Observations and Bin Microphysical Modeling to Enhance Frozen Phase Precipitation Process Understanding

Branislav M. Notaros¹, V. N. Bringi¹, Andrew J. Newman², Gwo-Jong Huang^{1,3}, GyuWon Lee³, and Dmitri Moisseev^{4,5}

NASA PMM Meeting – 11 October 2018

NASA PMM Grant NNX16AE43G

¹Department of Electrical and Computer Engineering, Colorado State University

²National Center for Atmospheric Research

³Center for Atmospheric REmote sensing (CARE), Kyungpook National University, Rep. of Korea

⁴Institute for Atmospheric and Earth System Research, University of Helsinki

⁵Finnish Meteorological Institute, Helsinki Finland

Outline

- Project Background
 - Motivation
 - Case study overview
- Results
 - New SR(Z_{Ku}, DWR) development
 - WRF model-observation comparisons
- Summary

Project Motivation

- Frozen phase microphysics is a complex blend of many processes
- Representation in numerical models still needs much refinement
 - Uncertain process representation and rates
- High quality observations are still relatively sparse
- GCPEx had many advanced in situ and remote sensing observations for ground validation and microphysical studies
- Proposal goal: Use 2DVD, PIP, scanning radars (e.g. D3R), POSS, MRR, etc. for comparisons to WRF bin microphysics simulations
- Atmospheric models and microphysical schemes need to be confronted with high quality observations
 - Identify areas needing improvement and test alternatives in microphysics scheme

Project Motivation

• GCPEx

- 30-31 January 2012
 - Lake effect banded snow followed by large-scale uniform light snowfall events in 36-hr period
 - CARE & Huronia

Case Study Overview

- Lake effect on 30 January 2012
 - Cold WNW flow across Lake Huron
 - $^{\circ}$ Lake temps \sim 2 $^{\circ}$ C, 850 mb -15 $^{\circ}$ C
 - Dendritic growth zone at 1 -1.5 km
 - Alternating graupel and large aggregates
 - Riming likely throughout the event

Case Study Overview

- Synoptic snowfall on 31 January
 - Warm air moving up and over frontal zone (vertical motion and condensation)
 - Air temperatures ~ -10 to -15° C and good moisture supply in vertical motion layer
 - Dendritic growth, yet little riming

- Developed new radar snow rate (SR) estimate using Z_h and dual wavelength reflectivity ratio (DWR)
 - D3R radar, 2DVD, Pluvio during synoptic snowfall event
 - Beginning to assess methodological uncertainty
 - Snowflake mass, fall speed, characteristic dimension, and scattering model

Characteristic	Option #1	Option #2
Mass	Böhm (1989)	Heymsfield and Westbrook (2010)
Fall speed	Huang et al. (2015),	Joanneum Research
Characteristic Dimension	Equivalent spherical diameter	Maximum dimension
Scattering model	T-matrix using soft spheroids with fixed axis ratios and quasi-random orientations	Liao et al. (2013) effective fixed density and oblate spheroid; fixed density of 0.2 gcm ⁻³

- Developed new radar snow rate (SR) estimate using Z_h and dual wavelength reflectivity ratio (DWR) (at CARE site)
 - Choose three combinations from table:
 - Bohm (1989), Huang et al (2015) fall speed and scattering model
 - HW Heymsfield and Westbrook (2010), Joanneum fall speed, Liao et al. (2013) scattering
 - LM Bohm (1989), Joanneum fall speed, Liao scattering

Characteristic	Option #1	Option #2
Mass	Böhm (1989)	Heymsfield and Westbrook (2010)
Fall speed	Huang et al. (2015),	Joanneum Research
Characteristic Dimension	Equivalent spherical diameter	Maximum dimension
Scattering model	T-matrix using soft spheroids with fixed axis ratios and quasi-random orientations	Liao et al. (2013) effective fixed density and oblate spheroid; fixed density of 0.2 gcm ⁻³

- Comparison of the 2DVD derived DWR using HB, LM, and HW methods
 - **HB** compares best
 - However, the PSDs across methods are not exactly the same
- Left panels 2DVD derived Z_h versus 2DVD measured SR, with Z-SR power-law fits, for Ku- and Ka-bands
 - Z_{Ku} -SR has much more scatter than Z_{Ka} -SR
 - We use Z_{Ka} -SR for single band retrievals
- \bullet Right panels estimated SR using Z_e and DWR from 2DVD versus 2DVD SR
 - All biased high when SR<0.2 mm
 - Including DWR reduces normalized variance of fit from $Z_{ka}\mbox{-SR}$ from $\sim\!40\mbox{-}45\%$ to $\sim\!30\%$

Accumulation traces:

- $\bullet Z_{Ka}$ -SR relationships only
- •Final algorithm: radar SR estimated by combining $SR(Z_{Ku}, DWR)$ and Z_{Ka} -SR when DWR ≈ 1
- RMSE of accumulation timeseries decreases when including DWR
 - •~50% for **HB**

- New SR(Z,DWR) and previous Z-SR relationships generate areal snow accumulation maps
 - Take home: Inclusion of DWR improves radar-SR fit and estimation as compared to reference gauge
 - One component of model-observation comparisons
- Multi-metric comparisons
 - More constrained identification of process and/or parameter deficiencies
 - Help prevent model overtuning getting the right answer for the wrong reason(s)
- WRF using bin microphysical scheme

WRF Configuration

- WRF V3.7.1
 - Three domains

WRF Simulation

- Model analysis focuses on 500-m domain
- WRF produced linear bands to cellular lake-effect snow storm structure
 - Also made bulk
 microphysics simulations
 no in-depth validation
 performed yet
 - Inclusion of PBL scheme at 500-m has large impact on simulation
 - Similar to Iguchi et al. (2012)

WRF GCPEx

Init: 2012-01-29_22:30:00 Valid: 2012-01-30_00:00:00

WRF Simulation

- Total Liquid Water Equivalent (LWE) accumulation at Huronia (H), South of Huronia (SH), and model Maximum Precipitation (MP)
 - Used as guide for similarity to observations
 - SH point is similar to observations
 - Accumulation rate and total amount

Model-Observation Comparisons

- Histograms of the third moment (M_3) to the second moment (M_2) of the PSD (D_{32})
 - Model reproduces maximum extent of observed D₃₂ variability
 - Distribution is incorrect
 - Observations are unimodal while model is always bimodal
 - Microphysical or dynamical cause is under investigation

Model-Observation Comparisons

- Scatter plot of Z_e/N_o^* vs. D_{32} for observed and modeled data
 - Z_e is calculated in the similar manner for both model and observations
 - $N_0^* = (M_2)^4 / (M_3)^3 = (M_2) / (D_{32})^3$
 - Both observations and model data agree qualitatively with the theoretical relationship ($Z_e/N_o^* \sim D_{32}^5$)
 - Relatively independent of precipitation rate, useful way to synthesize and compare observations and model
 - Model m(D) relationship impacts comparison

Summary

- Examining GCPEx 30-31 January 2012 lake-effect and synoptic snowfall event
 - Advanced observations permit more holistic investigation of winter precipitation events and model simulations
- Developed improved radar snowrate estimation using DWR SR(Z,DWR) relationship
- WRF LES simulation of the GCPEx lake-effect snow event using the UPNB scheme reasonably captured the storm structure and precipitation pattern
- UPNB explicitly simulates evolution of PSDs and reproduced precipitation PSD close to the ground
 - Uncertain model-observation comparisons due to imperfect model simulation
- Z_e/N_o* vs. D₃₂ mostly independent of precipitation rate
 - May be a useful way to synthesize model data across domain
 - Discrepancies between modeled and observed data likely can be attributed to the fixed mass-size and terminal velocity relationships in the UPNB